

K25P 2018

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S.–Supplementary) Examination, April 2025 (2021 and 2022 Admissions) MATHEMATICS MAT 2C08 : Advanced Topology

Time : 3 Hours

Max. Marks : 80

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

PART – A

1. Prove that every totally bounded metric space is bounded.

Vone (

- 2. Prove that every closed subset of a compact space is compact.
- 3. Prove that the Moor plane is not normal.
- 4. Let X = {1, 2, 3}. Find all topologies τ on X such that (X, τ) is regular.
- 5. Explain Hilbert cube.
- 6. Let (X, τ) be a topological space, let $x_0 \in X$, and let $[\alpha] \in \pi_1(X, x_0)$. Then prove that there exists $[\overline{\alpha}] \in [\alpha] \in \pi_1(X, x_0)$ such that $[\alpha] \circ [\overline{\alpha}] = [\overline{\alpha}] \circ [\alpha] = [e]$.

PART - B

Answer **any four** questions from this part without omitting any Unit. **Each** question carries **16** marks. (4×16=64)

UNIT – I

- 7. Let (X, d) be a metric space. Then prove that the following statements are equivalent.
 - a) (X, d) is compact.
 - b) (X, d) is sequentially compact.
 - c) (X, d) is countably compact.
 - d) (X, d) has Bolzano-Weierstrass property.

K25P 2018

- a) Prove that a topological space (X, τ) is compact if and only if every family of closed subsets of X with the finite intersection property has a nonempty intersection.
 - b) Let (X, τ) be a topological space and let B be a basis for τ. Then prove that (X, τ) is compact if and only if every cover of X by members of B has a finite subcover.
 - c) Let (X, τ) and (Y, U) be compact spaces. Then prove that X × Y is compact.
- 9. a) Prove that every closed subspace of locally compact Hausdorff space is locally compact.
 - b) With suitable example, show that the continuous image of a locally compact space need not be locally compact.
 - c) With detailed explanation, give an example of a topological space which has the Bolzano-Weierstrass property but it is not locally compact.

UNIT – II

- 10. a) Let (X, τ) be a topological space, let (Y, U) be a Hausdorff space, and let $f : X \to Y$ be continuous. Then prove that $\{(x_1, x_2) \in X \times X : f(x_1) = (x_2)\}$ is a closed subset of $X \times X$.
 - b) For each i = 0, 1, 2 prove that the product of T_i space is a T_i space.
- 11. a) Let $\{(X\alpha, \tau\alpha) : \alpha \in \Lambda\}$ be a family of topological spaces, and let $X = \prod_{\alpha \in \Lambda} X\alpha$. Then prove that (X, τ) is regular if and only if $(X\alpha, \tau\alpha)$ is regular for each $\alpha \in \Lambda$.
 - b) Prove that a T₁ space (X, τ) is regular if and only if for each member p of X and each neighbourhood U of p, there is neighbourhood V of p such that $\overline{V} \subseteq U$.
 - c) Prove that a T₁ space (X, τ) is regular if and only if for each $p \in X$ and each closed set C such that $p \notin C$, there exists an open sets U and V such that $C \subseteq U, p \in V$, and $\overline{U} \cap \overline{V} = \phi$.
- 12. a) Prove that every uncountable subset of a Lindelof space has a limit point.
 - b) Prove that every second countable regular space is normal.

UNIT – III

- 13. State and prove Urysohn's Lemma.
- 14. Prove that a T₁ space (X, τ) is normal iff whenever A is closed subset of X and f : A \rightarrow [-1, 1] is a continuous function, then there is a continuous function F : X \rightarrow [-1, 1] such that F|_A = f.
- 15. a) Let (X, d) be a compact metric space, let (Y, U) be a Hausdorff space, and let $f : X \rightarrow Y$ be a continuous function that maps X onto Y. Then prove that (Y, U) is metrizable.
 - b) Let (X, τ) be a topological space, let x₀ ∈ X, and let e : I → X be the path defined by e(x) = x₀ for each x ∈ I. Then prove that [α] ∘ [e] = [e] ∘ [α] = [α] for each [α] ∈ π₁ (X, x₀).

